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Nonlinear Double Well Schrödinger Equations
in the Semiclassical Limit
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We consider time-dependent Schrödinger equations with a double well poten-
tial and an external nonlinear, both local and non-local, perturbation. In the
semiclassical limit, the finite dimensional eigenspace associated to the lowest
eigenvalues of the linear operator is almost invariant for times of the order
of the beating period and the dominant term of the wavefunction is given by
means of the solutions of a finite dimensional dynamical system. In the case of
local nonlinear perturbation, we assume the spatial dimension d=1 or d=2.

KEY WORDS: Nonlinear Schrödinger operator; Gross-Pitaevskii equation;
Norm estimate of solutions.

1. INTRODUCTION

The theoretical analysis of time-dependent nonlinear Schrödinger (here-
after NLS) equations

{
i–hψ̇=H0ψ+ εWψ, ε ∈R, ψ̇= ∂ψ

∂t
,

ψ(x,0)=ψ0(x)∈L2(Rd), ‖ψ0‖=1,
(1)

where

H0 =−
–h2

2m
�+V, �=

d∑
j=1

∂2

∂x2
j

, d�1, 2m=1 (2)
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is the linear Hamiltonian and where W =W(x, |ψ |) is a nonlinear pertur-
bation, has attracted an increasing interest in these last few years (see, e.g.,
refs. 12 and 15).

In this paper, we consider the case of symmetric potentials V with
double-well shape. In fact, such a potential appears in several fields, from
Bose–Einstein condensate states weakly coupled(13) to localization of sym-
metric molecules.(11) If the nonlinear term is absent then the linear Ham-
iltonian H0 has even-parity and odd-parity eigenstates and the state ψ

generically performs a beating motion, hence the beating period plays the
role of unit of time. When we restore the nonlinear term a symmetry
breaking phenomenon occurs: that is, if the nonlinearity is larger than a
threshold value then new asymmetric stationary states appears.(1,7,8) Fur-
thermore, for higher nonlinearity, the beating motion is forbidden.(8,13,16)

These results can be obtained by reducing the NLS equation to a finite
dimensional dynamical system exactly solvable and proving the stability of
this approximation for times of the order of the beating period with a rig-
orous estimate of the error in the semiclassical limit.(8,14)

More precisely, in ref. 8 has been considered the case on NLS in any
dimension d�1 where the nonlinear perturbation is non-local, that is it is
given by

W =〈ψ,gψ〉g(x), (3)

where g(x) is a given odd function. In ref. 14 has been considered the case
of NLS in dimension d= 1 and with a nonlinear local cubic perturbation
given by

W =|ψ |2σ , σ =1. (4)

Here, we consider NLS Eq. (1) in the semiclassical limit in the cases
of both local (3) and non-local (4), with any σ >0, nonlinearity, where we
assume that d = 1 and d = 2 in the case of local nonlinear perturbation.
Under some generic assumptions on the double-well potential, we give the
asymptotic behavior of the solution ψ with a precise estimate of the error.
In particular, as general results it follows that new asymmetric stationary
states appear and the beating motion, between the two wells of a state
initially prepared on the two lowest eigenstates, gradually disappears for
increasing nonlinearity.

Hence, the results previously obtained by refs. 8 and 14 can be seen
as a particular case of the general treatment given here.

Our paper is organized as follows.
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In Section 2, we introduce the assumptions on the potential. More-
over, we collect some semiclassical results concerning the spectrum of the
linear Schrödinger operator.

In Section 3, we discuss the beating motion for the unperturbed prob-
lem and the choice of the parameters.

In Section 4, we give the existence results for Eq. (1), the conservation
laws and a priori estimate. The global existence of the solution is proved
for both repulsive and attractive nonlinear perturbation, where, in the sec-
ond case, we have to assume that the strength of the nonlinear perturba-
tion is small enough.

In Section 5, we introduce the two-level approximation and we dis-
cuss, in such an approximation, the appearance of new asymmetric sta-
tionary states for large nonlinearity strength. The two-level approximation,
roughly speaking, consists in projecting Eq. (1) onto the two-dimensional
space spanned by the eigenvectors of the linear Schrödinger operator asso-
ciated to the two lowest eigenvalues. For practical purposes, it is more
convenient to choose, as a basis of such a two-dimensional space, the two
single-well states. The dynamical system which we obtain is, in some cases
(for instance for cubic local nonlinearity), exactly solvable.

In Section 6, we prove the stability of the two-level approximation in
the semiclassical limit. We make use of the comparison criterion between
ordinary differential equations and of a priori estimate of the solution of
the NLS equation.

In Appendix, we recall some useful inequalities.
We close this section by introducing some notations:

– Here ‖ · ‖p denotes the norm of the Banach space Lp(Rd), p ∈
[1,+∞],‖ · ‖ usually denotes the norm of the space L2(Rd) and some-
times (when this does not cause misunderstanding) it denotes the norm of
a bounded operator, too;

– The notations y = o(–hα), y = O(–hα), α � 0, and y = O(e−�/–h)
respectively mean that y–h−α →0 as –h→0 and that there exist –h� >0 and
a positive constant C>0, independent of –h, such that

|y|�C–hα and |y|�Ce−�/–h, ∀–h∈ (0,–h�).

– The notation y=Õ(e−�/–h) means that for any �′,0<�′<�, then
y=O(e−�′/–h); that is, there exist –h� >0 and a positive constant C=C�′ >
0, independent of –h, such that
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|y|�Ce−�′/–h, ∀–h∈ (0,–h�).

As usual, R denotes the set of real numbers, N denotes the set of
positive integer numbers and N

�=N∪{0};C denotes any positive constant
independent of –h and t .

2. ASSUMPTIONS AND PRELIMINARY RESULTS

2.1. Linear Operator

Here, we introduce the assumptions on the double-well potential V
and we collect some well known results on the linear operator H0.

Hypothesis 1. The potential V (x) is a real-valued function such
that:

(i) V is a symmetric potential; hence, the Hamiltonian H0 is invari-
ant under some space inversion S : [S,H0]=0;

(ii) V ∈C∞(Rd);
(iii) V(x) admits two minima at x=x±, where x− =Sx+ and x+ 
=x−,

such that

V (x)>Vmin =V (x±), ∀x ∈R
d , x 
=x±; (5)

(iv) finally we assume that

V −
∞ = lim inf

|x|→∞
V (x)>Vmin, (6)

and

V +
∞ = lim sup

|x|→∞
V (x)<+∞. (7)

Remarks.

– For the sake of definiteness we can always assume that, by means
of a suitable choice of the coordinates, V is symmetric with respect to the
spatial coordinate x1, that is

V (−x1, x2, . . . , xd)=V (x1, x2, . . . , xd), ∀(x1, . . . , xd)∈R
d; (8)
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– For the sake of simplicity, we assume also that

∇V (x±)=0 and Hess V (x±)>0.

The case of degenerate minima, that is det[HessV (x±)] = 0, could be
treated in a similar way; however, we don’t dwell here on such details;

– In fact, we could replace assumption (ii) with the weaker assump-
tion V ∈C2;

– Assumption (7) is introduced in order to obtain the local exis-
tence of the solution of the Cauchy problem (1) by means of well known
results(4) (see also refs. 5 and 6). In fact, the local solution of the Cauchy
problem exists for some unbounded potentials too (see, e.g., ref. 3 and §9.2
in ref. 5).

The operator H0 formally defined by (2) admits a self-adjoint realization
(still denoted by H0) on L2(Rd) (Theorem III.1.1 in ref. 2).

Let σ(H0)=σd ∪σess be the spectrum of the self-adjoint operator H0,
where σd denotes the discrete spectrum and σess denotes the essential spec-
trum. It follows that (see Theorem III.3.1 in ref. 2)

σd ⊂ (Vmin, V
−
∞) and σess = [V −

∞,+∞).

Furthermore, the following two Lemmas hold:

Lemma 1. Let σd be the discrete spectrum of H0. Then, for any –h∈
(0,–h�), for some –h� >0 fixed, it follows that:

(i) σd is not empty and, in particular, it contains two eigenvalues at
least;

(ii) let λ± be the lowest two eigenvalues of H0, they are non-degener-
ate, in particular λ+ < λ− and there exists C> 0, independent of –h, such
that

inf
λ∈σ(H0)−{λ+, λ−}

[λ−λ±] � C–h. (9)

Proof. The proof is an immediate consequence of the above assump-
tions and standard WKB arguments. In fact, by assuming, for the sake of
simplicity, that

HessV (x±)=2 diag(µ1,µ2, . . . ,µd), µj > 0, j =1, . . . , d, (10)
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then the first two eigenvalues of H0 are given by the semiclassical single-
well non-degenerate eigenvalues (Theorem 2.3.1 in ref. 10)

λ± =Vmin +

 d∑
j=1

√
µj


–h+o(–h), as –h→0. (11)

Furthermore, from conditions (5) and (6) the estimate (9) follows (Corol-
lary 2.3.5 in ref. 10).

Lemma 2. Let ϕ± be the normalized eigenvectors associated to λ±,
then:

(i) ϕ± can be chosen to be real-valued functions such that

ϕ±(−x1, x2, . . . , xd)=±ϕ±(x1, x2, . . . , xd); (12)

(ii) ϕ± ∈H 1(Rd);
(iii) ϕ± ∈Lp(Rd) for any p∈ [2,+∞];
(iv) there exists a positive constant C, independent on –h, such that

‖ϕ±‖p � C–h−d p−2
4p , ∀p∈ [2,+∞], ∀–h∈ (0,–h�). (13)

Proof. Property (i) immediately follows from (8). Property (ii) fol-
lows from Lemma III.3.1 in ref. 2. In order to prove the statement (iii) we
recall that the eigenvectors ϕ± satisfy to the following global estimate: for
any δ > 0 fixed there exists a positive constant C

δ,–h > 0 such that (Theo-
rem III.3.2 and Corollary III.3.1 in ref. 2)

|ϕ±(x)|�Cδ,–h exp[−δ|x|/–h].

Hence ϕ± ∈L∞(Rd). From this fact and since ϕ± ∈L2(Rd) then statement
(iii) immediately follows. Finally, in order to prove the statement (iv) let

ϕ± = 1√
2

[ϕR ±ϕL],
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where the vectors ϕR,L, usually called single-well states, are such that

ϕR = 1√
2

[ϕ+ +ϕ−] and ϕL= 1√
2

[ϕ+ −ϕ−]

and

ϕR(−x1, x2, . . . , xd)=ϕL(x1, x2, . . . , xd)

and they satisfies to the following WKB estimates(10)

ϕR(x) ∼ [2π–h]−d/4e−[
∑d
j=1(xj−x+,j )2√µj ]/2–h

, as –h→0, (14)

in a neighborhood of the mimina x± = (x±,1, . . . , x±,d ) and where µj are
defined in (10). From this fact and since |ϕR(x)| � Ce−C/–h (see condition
(5)) away from the minima, then property (iv) follows for p=+∞. Making
use of this estimate, from the normalization of the eigenvectors and from
the Hölder inequality then property (iv) follows for any p ∈ [2, +∞]:

‖ϕ±‖p=
[
‖ϕ2

±ϕ
p−2
± ‖1

]1/p
�‖ϕ±‖2/p

2 ‖ϕ±‖(p−2)/p
∞ =‖ϕ±‖(p−2)/p

∞ .

From (11) it follows that the splitting between the two lowest eigenvalues

ω= 1
2 (λ− −λ+), (15)

vanishes as –h goes to zero. In order to give a precise estimate of the split-
ting ω we make use of the fact that V is a symmetric double-well potential
with non-zero barrier between the wells. That is, let

�= inf
γ

∫
γ

√
V (x)−Vmin dx >0, (16)

be the Agmon distance between the two wells; where γ is any path con-
necting the two wells, that is γ ∈ AC([0,1],Rd) such that γ (0)= x− and
γ (1)=x+. From standard WKB arguments (see ref. 10) then it follows that
the splitting is exponentially small, that is

ω= Õ(e−�/–h). (17)
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Furthermore, the single-well states ϕR,L are localized on one well, and

‖ϕRϕL‖∞ = Õ(e−�/–h). (18)

More precisely, these functions are localized on only one of the two wells
in the sense that for any r > 0 there exists C > 0 such that

∫
Dr(x+)

|ϕR(x)|2 dx=1+O(e−C/–h)

and ∫
Dr(x−)

|ϕL(x)|2 dx=1+O(e−C/–h),

where Dr(x±) is the ball with center x± and radius r. For such a reason
we call them single-well (normalized) states.

Remark.

– We emphasize that, by assuming some further regularity prop-
erties on the potential V , it is possible to obtain the precise asymptotic
behavior of the splitting as –h goes to zero.(9)

2.2. Nonlinear Perturbation

Here we admit both local and non-local nonlinear perturbations.

Hypothesis 2. Let g(x) be a given real-valued bounded and contin-
uous function. We assume that

(i) Nonlinear local perturbation. The perturbation W has the form

W =W�(x, |ψ |)=g(x)|ψ(x)|2σ , σ > 0. (19)

(ii) Nonlinear non-local perturbation. The perturbation W has the
form

W =Wn�(x, |ψ |)=g(x)〈ψ,gψ〉. (20)

In the local perturbation case (19) we assume the dimension d=1 or d=2.
In the non-local perturbation case (20) we don’t introduce any assumption
on the dimension d. Hereafter, let g̃=‖g‖∞ < ∞.
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Remarks.

– If σ = 1 and g ≡ 1 then the NLS Eq. (1) with local pertur-
bation (19) coincides with the one previously studied by Sacchetti(14) in
dimension d = 1. If g(x) is an odd function, that is g(−x1, x2, . . . , xd)=
−g(x1, x2, . . . , xd); then the NLS Eq. (1) with non-local perturbation (20)
coincides with the one previously studied by Grecchi, Martinez and Sac-
chetti.(8)

– In the case of nonlinear local perturbation (19) we have to
assume that the dimension d is not higher than 2. In fact, in the case of
dimension d >2 then, provided that σ < 2

d−2 , the existence results and the
conservation laws (see Section 4) still hold, but the stability result fails (see
Section 6).

2.3. Assumption on the Initial State

Let

�c=1− [〈ϕ+, ·〉ϕ+ +〈ϕ−, ·〉ϕ−]

be the projection operator onto the eigenspace orthogonal to the
bi-dimensional space associated to the doublet {λ±}. Let ψ0 be the initial
wavefunction, we assume that

Hypothesis 3. �cψ
0 =0.

That is, we assume that

ψ0 = c+ϕ+ + c−ϕ− = cRϕR + cLϕL
for some c± and cR,L.

Remarks.

– In fact, we could assume that the initial state ψ0 belongs to a
finite dimensional eigenspace of H0. More precisely, let σ1, σ2 ⊂σ(H0) such
that σ(H0)=σ1 ∪σ2, σ1 ∩σ2 =∅, σ1 ⊂σpp(H0), where σpp denotes the pure
point spectrum of H0, and σ1 has a finite number of elements. Let H1 be
the finite-dimensional spectral eigenspace associated to σ1. Then we can
replace the previous assumption by assuming that ψ0 ∈ H1 and

d(σ1, σ2)= inf
λ∈σ1,µ∈σ2

|λ−µ|�C–h.

In such a case, we have to define ω= 1
2 infλ,µ∈σ1,λ
=µ|λ − µ|.



1356 Sacchetti

3. BEATING MOTION AND CHOICE OF PARAMETERS

Let us consider, for a moment, the time-dependent linear Schrödinger
equation

{
i–hψ̇=H0ψ, ψ̇= ∂ψ

∂t
,

ψ(x,0)=ψ0(x)∈L2(Rd), �cψ
0 =0,

(21)

This equation has an explicit solution given by

ψ(x, t) = e−iλ+t/–hc+ϕ+ + e−iλ−t/–hc−ϕ−

= 1√
2

[c+e−iλ+t/–h + c−e−iλ−t/–h]ϕR + 1√
2

[c+e−iλ+t/–h − c−e−iλ−t/–h]ϕL

= 1√
2
e−i�t/

–h
[(
δ̃ϕR + δϕL

)
cos(ωt/–h)+ i

(
δϕR + δ̃ϕL

)
sin(ωt/–h)

]
,

where we set

λ± =�∓ω, δ̃= c+ + c−, δ= c+ − c−.

That is ψ(x, t) performs a beating motion with beating period

T = 2π–h
ω
.

Such a period will play the role of unit of time.

Hypothesis 4. Let ω be the splitting (15) satisfying to the asymp-
totic estimate (17). We assume that the real-valued parameter ε depends
on –h in such a way

|ε|–h−dσ/2

ω
� C, ∀–h ∈ (0, –h�) (22)

for some positive constant C, independent of –h, and for some –h�, where
σ is defined in (19) for nonlinear local perturbations and where σ =0 for
nonlinear non-local perturbations (20).
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Remarks.

– We emphasize that the strength of the perturbation is, roughly
speaking, given by |ε| is the case of nonlinear non-local perturbation (20),
and given by |ε|–h−dσ/2 in the case of nonlinear local perturbation (19).
The ratio

η= ε–h−dσ/2

ω

plays the role of effective nonlinearity parameter. The above assumption
implies that |η|�C.

– Condition (22) implies that

(Beating period)× (Perturbation strength)

=T × |ε|–h−dσ/2 ≈
–h
ω

× ω=–h≈dist(σ (H0), λ±).

Thus, heuristic arguments do not suggest us that the subspace (1 − �c)L
2

is almost invariant for times of the order of the beating period. In fact, we
will prove that ‖�cψ‖= Õ(e−�/–h) for any t ∈ [0, T ] for –h small enough.

4. EXISTENCE RESULTS AND CONSERVATION LAWS

Here, making use of some results by ref. 4 (see also ref. 5), we prove
that the solution of Eq. (1) globally exists. To this end we recall that
ψ0 ∈H 1 ∩Lp for any p∈ [2,+∞] (see Lemma 2). The assumptions on the
strength of the nonlinear perturbation, that is ε= Õ(e−�/–h) (see Eqs. (17)
and (22)), could, in order to prove the global existence result and the con-
servation laws, be relaxed; in fact, here we simply require that ε=O(–hα)
for some α > 2.

4.1. Local Existence

Theorem 1. There exists T �>0 and an unique solution ψ ∈C([0, T �),
H 1)∩C1([0, T �),H−1) of (1), where T �=+∞ or ‖∇ψ‖→+∞ as t→T �.

Proof. This result is a consequence of Theorem 2.1 and Examples
1–3 by ref. 4 (see also ref. 5). In fact, V ∈L∞ and ψ0 ∈H 1; furthermore
we show that both Wl and Wnl satisfy the conditions of ref. 4 (see also
ref. 5). To this end let, in the case of local perturbation,
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f (x, z)=g(x)|z|2σ z,

where from (A1) it follows that

|f (x, z1)−f (x, z2)|�C[1+|z1|2σ +|z2|2σ ]|z1 − z2| (23)

for some positive constant C. Then the local existence of the solution in
the case of local nonlinear perturbation follows. In the non-local case,
where

W =Wn�(x,ψ)=g(x)〈ψ,gψ〉

the local existence result follows by means the same arguments. We simply
have to check that

‖Wn�(x, u)u−Wn�(x, v)v‖�C‖u−v‖.

Indeed,

‖Wn�(x, u)u−Wn�(x, v)v‖
= g̃‖〈u, gu〉u−〈v, gv〉v‖
= g̃‖(〈u, gu〉−〈v, gv〉)u+〈v, gv〉(u−v)‖
� g̃‖u‖ |〈u, gu〉−〈v, gv〉|+ g̃2‖v‖2‖u−v‖
� g̃‖u‖ |〈u−v, gu〉+〈v, g(u−v)〉|+ g̃2‖v‖2‖u−v‖
� g̃2‖u‖ [‖u‖ · ‖u−v‖+‖v‖ · ‖u−v‖]+ g̃2‖v‖2‖u−v‖
�C‖u−v‖,

where

C= g̃2[‖u‖2 +‖v‖2 +‖u‖ · ‖v‖].

4.2. Conservation Laws

By means of a direct computation the following first integral exists.
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4.2.1. Conservation of the norm

Let
N (ψ)=‖ψ‖2

then
N [ψ(x, t)]=N [ψ0(x)]=1.

4.2.2. Conservation of the energy

Let us consider the case of local nonlinear perturbation (19). Let

H(ψ)=H�(ψ)=〈ψ,H0ψ〉+ ε

σ +1
〈ψσ+1, gψσ+1〉 (24)

defined on H 1(Rd)∩L2(σ+1)(Rd). Then a direct computation gives that

H�[ψ(x, t)]=H�[ψ0(x)].

Similarly, in the case of non-local nonlinear perturbation (20) then it fol-
lows that

Hn�[ψ(x, t)]=Hn�[ψ0(x)],

where the energy is defined as

H(ψ)=Hnl(ψ)=〈ψ,H0ψ〉+ 1
2
ε〈ψ,gψ〉2 (25)

on H 1(Rd)∩L2(Rd).

4.3. A priori Estimates

Theorem 2. Let

�= H[ψ0]−Vmin

–h2
,

where H is the energy defined above in Eqs. (24) and (25) for, respectively,
local and non-local perturbations. The solution ψ(x, t) of Eq. (1) satisfies
to the following a priori estimates

‖∇ψ‖�C
√
� (26)
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and

‖ψ‖p�C�d
p−2
4p , (27)

where

p∈ [2,+∞] if d=1 and p∈ [2,+∞) if d=2 (28)

Proof. We consider, at first, the case of local perturbation (19). The
conservation of the energy Hl (ψ) gives that

–h2‖∇ψ‖2 = Hl (ψ
0)− ε

σ +1
〈gψσ+1,ψσ+1〉−〈Vψ,ψ〉

� Hl (ψ
0)−VminN (ψ0)+ g̃|ε|

σ +1
‖ψ‖2(σ+1)

2(σ+1),

where

Vmin =min
x
V (x)=V (x±)>−∞ and g̃=‖g‖∞.

Hence

‖∇ψ‖2 ��+ρ2‖ψ‖2(σ+1)
2(σ+1),

where

ρ2 = g̃|ε|
(σ +1)–h2

�C|ε|–h−2 �1 and –h|�|=C+o(1)

since the small parameter ε satisfies (22). Now, we make use of the
Gagliardo–Nirenberg inequality (A2) obtaining

‖∇ψ‖2 ��+Cρ2‖∇ψ‖σd‖ψ‖2+σ(2−d)��+Cρ2‖∇ψ‖σd (29)

from which and from bootstrap argument the estimate (26) follows. Indeed,
if σd � 2 then the result immediately follows. If σd > 2 we recall that ϕR
and ϕL satisfy to the asymptotic behavior (14) then ‖∇ψ0‖ �C–h−1/2. If
we set

y=–h1/2‖∇ψ‖, α=–h�, β=Cρ2–h1−σd/2,
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where initially y�C, and where

C−1 �α�C and β=o(1) as –h→0

then (29) can be written as

y2 �α+βyσd .

Then fixed point arguments proved that y �C for any time, from which
(26) follows. From this fact, and making use of the Gagliardo–Nirenberg
inequality again, we obtain that

‖ψ‖p�C‖∇ψ‖δ‖ψ‖1−δ �C� 1
2 δ, δ= d(p−2)

2p
. (30)

Now, we consider the case of non-local perturbation (20). In such a
case, the conservation of the energy Hnl gives inequality (26) immediately.
Indeed,

‖∇ψ‖ = 1
k2

[
Hnl(ψ

0)−〈Vψ,ψ〉− 1
2
ε〈ψ,gψ〉2

]

� �+ρ2[‖ψ‖2
2]2, ρ2 = 1

2
g̃|ε|�1

� �+Cρ2‖∇ψ‖

As above, the estimates ‖∇ψ‖�C
√
� and (27) follow.

Remarks.

– Since ψ0 is prepared on the first two states and since (22) then it
follows that �∼–h−1. Hence the above estimates take the form

‖∇ψ‖�C–h−1/2 and ‖ψ‖p�C–h−d p−2
4p (31)

for any p satisfying(28);

– In fact the above a priori estimates hold for any ε > 0 (repul-
sive nonlinearity), and for any ε <0 (attractive nonlinearity) such that ε=
O(–hα) for any α>2.
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4.4. Global Existence

Theorem 3. The solution ψ of (1) globally exists; that is T ∗ =+∞.

Proof. The global solution immediately follows from Theorem 1 and
from the estimate (25).

5. TWO-LEVEL APPROXIMATION

5.1. Two-level Approximation

Since the beating period T = 2π–h
ω

plays the role of the unit of time it
is more convenient to consider the slow time

τ = ωt

–h
.

Therefore, if we consider the change of variable (with abuse of notation)

ψ(x, t)→ψ(x, τ)= ei�t/–hψ(x, t), �= 1
2

[λ+ +λ−]

then Eq. (1) takes the form (here ′ denotes the derivative with respect to
τ )

{
iψ ′ = 1

ω
[H0 −�]ψ+ ε

ω
Wψ

ψ(x,0)=ψ0(x)∈L2(Rd), �cψ
0 =0,

(32)

since W = W(x, |ψ |). In fact, we have also replaced the original
Hamiltonian H0 by H0 −�, by means of the gauge choice ei�t/

–h, in order
to have a simpler expression of the two-level system (see Eq. (36) below).
In order to study this equation for τ ∈ [0, τ ′], for any fixed τ ′ > 0, in the
semiclassical limit we rewrite ψ in the following form

ψ(x, τ)=ϕ(x, τ )+ψc(x, τ ), ϕ(x, τ )=aR(τ)ϕR(x)+aL(τ)ϕL(x), (33)

where

ψc(x, τ )=�cψ(x, τ )

and where

aR(τ)=〈ϕR,ψ〉 and aL(τ)=〈ϕL,ψ〉
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are unknown complex-valued functions. Since

H0ψ = aRH0ϕR +aLH0ϕL+H0ψc

= aR[�ϕR −ωϕL]+aL[−ωϕR +�ϕL]+H0ψc

then, by substituting (33) in (32) and projecting the resulting equation
onto the one-dimensional spaces spanned by the single-well states ϕR and
ϕL, and on the space �cL2(Rd) it follows that it takes the form



ia′
R =−aL+ rR rR = rR(aR, aL,ψc)= ε

ω
〈ϕR,Wψ〉

ia′
L=−aR + rL rL= rL(aR, aL,ψc)= ε

ω
〈ϕL,Wψ〉

iψ ′
c = 1

ω
[H0 −�]ψc+ rc rc= rc(aR, aL,ψc)= ε

ω
�cWψ〉

(34)

with initial conditions

aR,L(0)=〈ϕR,L,ψ0〉, ψ0
c =ψc(x,0)=�cψ0 =0.

Lemma 3. Let

rR,L= rR,L(aR, aL,ψc)= ε

ω
〈ϕR,L,Wψ〉.

Then, it follows that

rR,L(aR, aL,0)=ηr̃R,L(aR, aL)+ Õ(e−�/–h), (35)

where

(i) Local perturbation:

r̃R =CR|aR|2σ aR, r̃L=CL|aL|2σ aL and η= ε

ω
–h−dσ/2,

where

CR =–hdσ/2〈ϕR, g|ϕR|2σ ϕR〉 and CL=–hdσ/2〈ϕL, g|ϕL|2σ ϕL〉
are such that CR,L=O(1) as –h goes to zero.

(ii) Non-Local perturbation:

r̃R =CRaR|aR|2 + C̃aR|aL|2, r̃L=CLaL|aL|2 + C̃aL|aR|2
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and

η= ε

ω
,

where

CR =〈ϕR, gϕR〉2, CL=〈ϕL, gϕL〉2 and C̃=
√
CRCL

are such that CR,L = O(1) as –h goes to zero.

Proof. In order to give the explicit expression of the terms rR,L we
consider the local and non-local perturbations separately.

Local perturbation. In such a case, we get by taking ψc=0 in Wl

rR(aR, aL,0) = ε

ω
〈ϕR, g|aRϕR +aLϕL|2σ (aRϕR +aLϕL)〉

= ε

ω

[
|aR|2σ aR〈ϕR, g|ϕR|2σ ϕR〉+ Õ(e−�/–h)

]

according to (18). Similarly, we obtain that

rL(aR, aL,0)= ε

ω

[
|aL|2σ aL〈ϕL, g|ϕL|2σ ϕL〉+ Õ(e−�/–h)

]
.

If we set

CR =–hdσ/2〈ϕR, g|ϕR|2σ ϕR〉 and CL=–hdσ/2〈ϕL, g|ϕL|2σ ϕL〉

then

rR,L=ηCR,L|aR,L|2σ aR,L+ Õ(e−�/–h)

for any τ . Furthermore, from Lemma 2 it follows that

|CR,L| � g̃–hdσ/2‖ϕσ+1
R,L ‖2 = g̃–hdσ/2‖ϕR,L‖2(σ+1)

2(σ+1)

� C–hdσ/2
[
–h−d 2σ

8(σ+1)

]2(σ+1)
� C, ∀–h∈ (0, –h�),

where g̃=‖g‖∞ < +∞.

Non-Local perturbation. In such a case, it follows that (where we set
ψc=0 inside Wnl)
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rR(aR, aL,0)

= ε

ω
〈ϕR, (aRϕR +aLϕL)g〉 · 〈(aRϕR +aLϕL), g(aRϕR +aLϕL)〉

= ε

ω

[
aR〈ϕR, gϕR〉+ Õ(e−�/–h)

]
×

[
|aR|2〈ϕR, gϕR〉+ |aL|2〈ϕL, gϕL〉+ Õ(e−�/–h)

]

since (18). If we set

CR =〈ϕR, gϕR〉2, CL=〈ϕL, gϕL〉2, C̃=
√
CRCL

then

rR = ηCRaR|aR|2 +ηC̃aR|aL|2 + ε

ω
Õ(e−�/

–h)

= ηCRaR|aR|2 +ηC̃aR|aL|2 + Õ(e−�/–h)

since (22) and, similarly

rL = ηCLaL|aL|2 +ηC̃aL|aR|2 + ε

ω
Õ(e−�/

–h)

= ηCLaL|aL|2 +ηC̃aL|aR|2 + Õ(e−�/–h).

Finally

|CR,L|� g̃‖ϕR,L‖4 �C.

Definition 1. We call two-level approximation the system of differ-
ential equations given by

{
ib′
R =−bL+ηr̃R(bR, bL)

ib′
L=−bR +ηr̃L(bR, bL), bR,L(0)=aR,L(0). (36)

Remarks.

– The two-level approximation is obtained, up to an exponentially
small term, by substituting ψc ≡ 0 inside Eq. (34).

– The solution of Eq. (36) globally exists.
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5.2. First Integrals

As for the complete Eq. (1) a direct computation proves the following
conservation laws.

5.2.1. Conservation of the Norm

Let

Ñ (bR, bL)=|bR|2 +|bL|2,

then

Ñ [bR(τ), bL(τ)]= Ñ [bR(0), bL(0)], ∀τ ∈R.

In particular Ñ (bR, bL)=1 since

Ñ (bR, bL) ≡ |bR(0)|2 +|bL(0)|2 =|aR(0)|2 +|aL(0)|2 =‖ψ0‖2 =1. (37)

5.2.2. Conservation of the Energy

Let, in the case of local perturbation (19),

H̃(bR, bL) = H̃l (bR, bL)

= −
[
(b̄RbL+ b̄LbR) − η

σ +1

(
|bR|2(σ+1)CR +|bL|2(σ+1)CL

)]
,

or, in the case of non-local perturbation (20),

H̃(bR,bL) = H̃nl(bR,bL)

= −
[
(b̄RbL+ b̄LbR)− η

2

(
|bR|4CR+|bL|4CL+2C̃|bR|2 · |bL|2

)]
.

Then a direct computation gives that

H̃[bR(τ), bL(τ)]= H̃[bR(0), bL(0)], ∀τ ∈R.

Remarks.

– We emphasize that the two-level system (36) takes the
Hamiltonian form

iB ′ = ∂B̄H̃, B= (bR, bL).
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5.3. Analysis of the Two-level Approximation

Here, we perform the qualitative analysis of the two-level approxima-
tion where, for the sake of simplicity, we assume that the function g(x)

is an even function (resp. odd function) for local perturbations (19) (resp.
non-local perturbations (20)). We prove that

Theorem 4. There exists a threshold value η� > 0 such that the two-
level system (36) admits just two stationary symmetric (that is |bR|2 =
|bL|2 = 1

2 ) solutions for any η ∈ [0, η�]. At η= η� a bifurcation phenome-
non occurs and for η > η� new stationary asymmetric (that is |bR,L|2 
= 1

2 )

solutions appear.

Proof. In order to prove this result, we set

bR =peiα, bL=qeiβ, z=p2 −q2, θ =α−β,

where p and q are such that p2 + q2 = 1. The imbalance function z takes
value in the interval [−1, 1]; when z= 1 then |bR| = 1 and |bL| = 0 and
the wavefunction ϕ=bRϕR+bLϕL is practically localized on the right-side
well, in contrast, when z=−1 then |bR|=0 and |bL|=1 and the wavefunc-
tion ϕ is practically localized on the left-side well.

For the sake of definiteness we just consider the local perturbation
case, the non-local case could be similarly treated. In such a case, the two-
level approximation (36) takes the form


z′ =2

√
1− z2 sin θ

θ ′ = −2z√
1−z2

cos θ −η
[
CR

(
1+z

2

)σ −CL
(

1−z
2

)σ ]
.

(38)

If we set now

H̃= H̃(z, θ) = 2

{√
1− z2 cos θ

− η

σ +1

[
CR

(
1+ z

2

)σ+1

+CL
(

1− z
2

)σ+1
]}

,

then H̃ is an integral of motion and the above equation takes the Hamil-
tonian form {

θ ′ = ∂zH̃
z′ =−∂θH̃.
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Since g is an even function then CL =CR and it is not hard to see that
when the nonlinear perturbation is small enough then the above dynamical
system has only two stationary solutions (θ1, z1) and (θ2, z2) where θ1 =0
and θ2 =π and where z1 = z2 = 0 is the unique solution of the equation

∓ 2z√
1− z2

−η
[
CR

(
1+ z

2

)σ
− CL

(
1− z

2

)σ]
=0. (39)

In contrast, when the strength of the nonlinear perturbation is larger than
a threshold parameter η� then new solutions z 
=0 of Eq. (39) appear.

In particular:

5.3.1. Cubic (σ =1) and Quintic (σ =2) Local Nonlinearity

In these cases, Eq. (39) takes the form (we assume CR =CL = 1 for
the sake of definiteness)

2z√
1− z2

−ηz=0.

For η larger than the threshold value η� = 2 then the solution (z2, θ2)

bifurcates (see Fig. 1(a)) and two new solutions (θ3, z3) and (θ4, z4) appear,
where θ3,4 =π and

z3,4 =±
√
η2 −4
η

.

5.3.2. Higher Local Nonlinearity (σ =3 and σ =4)

In the case σ =3 then we have a picture similar as before. That is, for
η larger than the threshold value η� = 8

3 then the solution (z2, θ2) bifur-
cates (see Fig. 1(a)) and two new solutions (θ3, z3) and (θ4, z4) appear,
where θ3,4 =π and

z3,4 =±
[

2X
3η

+ 8η
3X

− 5
3

]1/2

, η��η,

where

X =
[(

8η2 −108+12
√

81−12η2

)
η

]1/3

.
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Fig. 1. In this figure, we plot the graph of the solutions (full lines represent stable centers,
broken lines represent unstable centers) of Eq. (39) as function of the parameter η, for given
nonlinearity. In (a) we consider the cases of σ = 1, 2, 3, where a pitch-fork bifurcation occurs
at η= η�, where η� = 2 for σ =1, 2 and η� = 8

3 for σ = 3. In (b) we consider the case σ = 4,
in such a case new solutions appear at η= η� where η� = √

27/2; at η= η+ = 4 two of them
collapses and, then disappear.

In the case σ =4, we have a different picture, that is at η coinciding with

the threshold value η�=
√

27
2 then four new solutions (θj , zj ), j =3,4,5,6

appear, where θj =π and z3,5 = 1√
3

and z4,6 =− 1√
3

. In particular,

z3,4 = ±
[

2X
3η

+ 2η
3X

− 1
3

]1/2

, η� � η,

z5,6 = ±
[(

− X
3η

− η

3X − 1
3

)
− i

√
3

2

(
2X
3η

− 2η
3X

)]1/2

, η��η�η+ =4,

where

X =
[(
η2 −27+3

√
81−6η2

)
η

]1/3

.

At η = η+ = 4 the solutions z5,6 collapse to the solution z2 = 0 (see
Fig. 1(b)).

Remarks.

– We emphasize that Eq. (38) admits, when σ =1 (cubic nonlinear-
ity) and CR =CL, an explicit solution by means of Jacobian elliptic func-
tion (see ref. 14 and the references therein).
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– The qualitative behavior of the solutions of Eq. (38) could be eas-
ily studied by means of the conservation of the energy H̃ as done, for
instance, by ref. 8.

6. STABILITY OF THE TWO-LEVEL APPROXIMATION

6.1. Main Result

Our main result consists in proving the stability of the two-level
approximation. We prove that:

Theorem 5. Let ψc=�cψ , aR =〈ψ,ϕR〉 and aL=〈ψ,ϕL〉, where ψ
is the solution of Eq. (32), let bR and bL be the solution of the system of
ordinary differential Eq. (36). Then, for any fixed τ ′>0

|bR,L(τ )−aR,L(τ )|= Õ(e−�/–h) and ‖ψc(·, τ )‖= Õ(e−�/–h) (40)

for any τ ∈ [0, τ ′], where �>0 is given in Eq. (16).

Remark.

– From this theorem, it follows that the time behavior, at least for
times of the order of the beating period, of the wavefunction ψ , initially
prepared on the lowest states, is practically described by means of the
solutions of the two-level approximation given in the previous section.

6.2. Proof of Theorem 5

For the sake of simplicity, hereafter, let us drop out the parameters
where this does not cause misunderstanding. The proof of the theorem is
organized in several Lemmas.

Lemma 4. Let ψ be the solution of (32) and write according to (33)

ϕ(x, τ )=aR(τ)ϕR(x)+aL(τ)ϕL(x) and ψ=ψc+ϕ

Let Wψ=WI +WII where:

(i) Local perturbation:

WI =WI
� =g(x)|ϕ(x, τ )|2σ ϕ(x, τ ), (41)

where WI
� does not depend on ψc, and let

WII
� =W�ψ−WI

�
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Then, it follows that

‖WI
� ‖�C–h−σd/2 (42)

and

‖WII
� ‖�C–h−dσ/2‖ψc‖, (43)

for some positive constant C independent on τ and –h.

(ii) Non-Local perturbation:

WI =WI
n�=〈ϕ(·, τ ), g(·)ϕ(·, τ )〉g(x)ϕ(x, τ ), (44)

where WI
n� does not depend on ψc, and let

WII
n� =Wn�ψ−WI

n�.

Then, it follows that

‖WI
n�‖�C and ‖WII

n� ‖�C‖ψc‖ (45)

for some positive constant C independent on τ and –h.

Proof. The proof of this Lemma is given in several steps. At first we
estimate the terms WI

n� and WII
n� , then we give the proof of the estimates

(42) and (43) for the local perturbation case; for what concerns the esti-
mate of the term WII

� we consider different cases depending on the dimen-
sion d.

Proof of estimates (45). Let us consider, at first, the non-local case
where WI

n� is given by (44), then

‖WI
n�‖ � g̃|〈ϕ(·, τ ), g(·)ϕ(·, τ )〉| · ‖ϕ‖

� g̃2‖ϕ2‖1 · ‖ϕ‖
� g̃2‖ϕ‖3 �C,

since ‖ϕ‖�‖ψ‖�1. For what concerns the other term it follows that

WII
n� = Wn�ψ−WI

n�

= g(x)[(〈ψc, gψc〉+〈ϕ,gψc〉+〈ψc, gϕ〉)g(ψc+ϕ)+〈ϕ,gϕ〉ψc].
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Hence

‖WII
n� ‖ �C

{
[‖ψc‖2 +2‖ϕ‖ · ‖ψc‖](‖ψc‖+‖ϕ‖)+‖ϕ‖2‖ψc‖

}
�C‖ψc‖.

Proof of estimate (42). The estimate of the term WI
� is immediate.

Indeed

‖WI
� ‖� g̃‖ϕ2σ+1‖= g̃‖ϕ‖2σ

∞ ‖ϕ‖�C–h−dσ/2

since ‖ϕ‖�1 and (see Lemma 2)

‖ϕ‖∞ � |aR(τ)| · ‖ϕR‖∞ +|aL(τ)| · ‖ϕL‖∞ �2C–h−d/4. (46)

Proof of the estimate (43) – Dimension d = 1. In such a case, the
proof is simpler than the case of dimension 2, because we can make use
of the inequality

‖ψc‖∞ �C–h−d/4, d=1, (47)

which immediately follows in the case d = 1 for any σ from the Minkow-
ski inequality and from (31):

C–h−d p−2
4p �‖ψ‖p�−(|aR(τ)|‖ϕR‖p+|aL(τ)|‖ϕL‖p)+‖ψc‖p,

for p=+∞, where |aR,L(τ )|�1 and where ϕR,L satisfy the estimate (13).
We consider

WII
l = Wlψ−WI

l =g(x)[|ψc+ϕ|2σ (ψc+ϕ)−|ϕ|2σ ϕ]

= g(x)[|ψc+ϕ|2σ −|ϕ|2σ ]ψc+g(x)[|ψc+ϕ|2σ −|ϕ|2σ ]ϕ. (48)

From (48) and (A1) then it follows that

‖WII
l ‖� g̃[‖ϕ‖2σ

∞ +‖ψc‖2σ
∞ ]‖ψc‖�C–h− 1

4 d(2σ)‖ψc‖.

Proof of estimate (43) – Dimension d = 2. In such a case, the esti-
mate (47) does not hold and we make use here of the Gagliardo–
Nirenberg inequality. Indeed, from (48) and (A1) it follows that

‖WII
l ‖�C[‖ϕ2σψc‖+‖ψ2σ+1

c ‖]�C[‖ϕ‖2σ
∞ ‖ψc‖+‖ψ2σ+1

c ‖]. (49)
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The Gagliardo–Nirenberg inequality (A4) gives that

‖ψkc ‖=‖ψc‖k2k �C‖∇ψc‖kδ‖ψc‖(1−δ)k,

where k=2σ +1 and δ= d
2 − d

2k . From this fact and from the estimate (31)
it follows that

‖ψkc ‖�C–h− d
4 (k−1)‖ψc‖ d

2 +(1− d
2 )k �C–h−d σ2 ‖ψc‖ (50)

since d=2 and k=2σ +1.

Remarks.

– For what concerns the nonlinear local perturbation in dimension
d >2 we emphasize that from Theorem 2 then ψ=ψc+ϕ∈Lp for any p<

2d
d−2 when d >2. Hence, in order to consider the L2-norm of Wlψ we have
to assume that |ψ |2σψ ∈L2, that is σ < 1

d−2 . In such a case, then Wlψ ∈L2

and we can apply the above estimate obtaining that

‖WII
l,a‖�C–h−dσ/2‖ψc‖γ , γ =1+ (2−d)σ

since ‖ψc‖�1, and, similarly,

‖WII
l,b‖�C–h−dσ/2‖ψc‖γ

Lemma 5. |a′
R,L| � C for any τ � 0 for some positive constant C

independent of τ and –h.

Proof. In the local perturbation case from (34) and from the previ-
ous Lemma it follows that

|a′
R|� |aL|+ |rR|� |aL|+ |ε|

ω
‖ϕR‖ · ‖Wψ‖

� |aL|+ |ε|
ω

‖ϕR‖[‖WI
l ‖+‖WII

l ‖]

� |aL|+C |ε|–h−σd/2

ω
‖ϕR‖[1+‖ψc‖]�C,

since |aL|�1 and ‖ψc‖�1 for any τ,‖ϕR‖=1 and (22). In the same way,
the estimate |a′

L| � C follows. The non-local perturbation case similarly
follows.
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Lemma 6. Let WI
l =WI

l (x, τ ) and WI
nl =WI

nl(x, τ ) be defined as in
(41) and (44); then

WI
l ,W

I
nl ∈C1(R,L2(Rd))

and ∥∥∥∥∥∂W
I
l

∂τ

∥∥∥∥∥ ,
∥∥∥∥∥∂W

I
nl

∂τ

∥∥∥∥∥�C–h−σd/2, ∀τ �0 and ∀–h∈ (0,–h∗).

Proof. Let us consider, for a moment, the local case where

WI
l =WI

l (x, τ )

=g(x)|aR(τ)ϕR(x)+aL(τ)ϕL(x)|2σ (aR(τ)ϕR(x)+aL(τ)ϕL(x))
=g(x)[āR(τ )ϕ̄R(x)+ āL(τ )ϕ̄L(x)]σ [aR(τ)ϕR(x)+aL(τ)ϕL(x)]σ+1.

Then

∂WI
l

∂τ
= g(x)

{
σ(āRϕ̄R + āLϕ̄L)σ−1(aRϕR +aLϕL)σ+1(ā′

Rϕ̄R + ā′
Lϕ̄L)

+(σ +1)|āRϕ̄R + āLϕ̄L|2σ (a′
RϕR +a′

LϕL)
}
.

Hence,

∥∥∥∥∥∂W
I
l

∂τ

∥∥∥∥∥ � ḡ(2σ +1)max[|a′
R|, |a′

L|]max[‖ϕR‖2σ
∞ ,‖ϕL‖2σ

∞ ]�C–h−σd/2,

where |a′
R,L| � C from the previous Lemma. A similar estimate for

the non-local perturbation case follows; where we can differentiate with
respect to τ under the integral 〈ϕ,gϕ〉 since the integral converges uni-
formly with respect to τ .

We give now an a priori estimate of the term ψc.

Lemma 7. Let ψc=�cψ where ψ is the solution of Eq. (32); it sat-
isfies to the following estimate

e−Cτ‖ψc‖= Õ(e−�/–h), ∀τ �0 (51)

for some positive constant C > 0 independent of –h and τ .
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Remarks.

– In particular, from (51) it follows that

‖ψc‖= Õ(e−�/–h)

uniformly for any τ ∈ [0, τ ′] for any τ ′ fixed, from which the second esti-
mate (40) follows.

Proof. Now, in order to prove the estimate (51) we first deduce from
(34) the relation

ψc(·, τ ) = −i
∫ τ

0
e−i(H0−�)(τ−s)/ωrc ds

= −i ε
ω

∫ τ

0
e−i(H0−�)(τ−s)/ω�cW(·,ψ)ψ(·, s)ds, (52)

since ψ0
c =�cψ

0 = 0 from assumption Hypothesis 2. Therefore, we can
write

ψc=−i ε
ω

[I + II ]

where

I =
∫ τ

0
e−i(H0−�)(τ−s)/ω�cWIds, WI =WI(ϕ)

II =
∫ τ

0
e−i(H0−�)(τ−s)/ω�cWIIds, WII =WII (ϕ,ψc).

For what concerns the first term it follows that, by integrating by part,

I =
[
−iωe−i(H0−�)(τ−s)/ω[Ho−�]−1�cW

I
]τ

0

+iω
∫ τ

0
e−i(H0−�)(τ−s)/ω[H0 −�]−1�c

∂WI

∂s
ds.

Let us emphasize that

‖e−i(H0−�)(τ−s)/ω‖=1

and from Lemma 1 it follows that

‖–h[H0 −�]−1�c‖�C.
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From these facts and from Lemmas 4 and 6 then

‖I‖�Cω–h max
s∈[0,τ ]

{
‖WI‖+ τ

∥∥∥∥∂WI

∂s

∥∥∥∥
}

�Cω–h
–h−σd/2(1+ τ).

For what concerns the other term it follows that

‖II‖�
∫ τ

0
‖WII‖ds�C–h−σd/2

∫ τ

0
‖ψc‖ds.

Collecting all these results and denoting

h(τ)=‖ψc(·, τ )‖,

then h(τ) is a non-negative real-valued function satisfying the estimate

h(τ) � ε

ω

{
Cω–h−1−σd/2(1+ τ)+C–h−σd/2

∫ τ

0
h(s)ds

}

� a

∫ τ

0
h(s)ds+b(1+ τ), (53)

where

a=C ε
–h−σd/2

ω
=Cη=O(1)

since (22) and

b=Cε–h−1−σd/2 = Õ
(
e−�/

–h
)

since (22) and (17). Then, the Gronwall’s Lemma gives that

h(τ)�beaτ + b

a
[eaτ −1]�CbeCτ

proving so the estimate (51).
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Remark.

– In dimension d >2 for local perturbation case and where σ < 1
d−2 ,

then (53) takes the form

h(τ)�a
∫ τ

0
hγ (s)ds+b(1+ τ), γ =1+ (2−d)σ ∈ (0,1),

from which and by means of Gronwall’s Lemma arguments the a priori
weaker estimate follows

h(τ)� [b+aτ ]1/(1−γ ).

Unfortunately, this estimate is not useful in order to extend the result of
Lemma 7 to the case of dimension d > 2.

Now, we are ready to complete the proof of the theorem. Let

J =
(

0 i
i 0

)
, A=

(
aR
aL

)
, R=

(−irR
−irL

)
,

then the system (34) takes the form

{
A′ =JA+R
ψ ′
c=− i

ω
[H0 −�]ψc− irc, R=R(A,ψc). (54)

Let

B=
(
bR
bL

)
, R̃=

(−iηr̃R
−iηr̃L

)
,

then the two-level approximation (36) takes the form

B ′ =JB+ R̃, R̃= R̃(B). (55)

We emphasize that

A,B ∈S2,

where

S2 =
{
A=

(
aR
aL

)
, aR, aL ∈C : |A|=

√
|aR|2 +|aL|2 �1

}
.
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Let now

F :S2 →C2

defined as

F(A)=JA+ R̃(A). (56)

Hence, the first Eq. of (54) and Eq. (55) can be written as

B ′ =F(B) and A′ =F(A)+
[
R(A,ψc)− R̃(A)

]
. (57)

Lemma 8. The function F defined in Eq. (56) satisfies to the fol-
lowing Lipschitz condition

|F(A)−F(B)�C|A−B| (58)

for some C>0.

Proof. By Definition

F(A)−F(B)=J (A−B)+ [R̃(A)− R̃(B)],

where

R̃(A)− R̃(B)=
(
η[r̃R(A)− r̃R(B)]
η[r̃L(A)− r̃L(B)]

)
.

In the local perturbation case, it follows that (we assume, for definiteness,
that |bR|� |aR|)

r̃R(A)− r̃R(B) = CR[|aR|2σ aR −|bR|2σ bR]

= CR[|aR|2σ (aR −bR)+ (|aR|2σ −|bR|2σ )bR]

= CR[|aR|2σ (aR −bR)+ (|aR|σ −|bR|σ )(|aR|σ +|bR|σ )bR],

hence

|r̃R(A)− r̃R(B)|�C|aR −bR|
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since (A1) and since |aR|, |bR|�1. The estimate for the term r̃L(A)− r̃L(B)
similarly follows. In the non-local case it follows that

r̃R(A)− r̃R(B) =CR[|aR|2aR −|bR|2bR]+ C̃[aR|aL|2 −bR|bL|2]

=CR[|aR|2(aR −bR)+ (|aR|2 −|bR|2)bR]

+C̃[(aR −bR)|aL|2 +bR(|aL|2 −|bL|2)]

from which follows (58) immediately, similarly for rL(A)− rL(B).
From (57) it follows that

(A−B)′ =F(A)−F(B)+ [R(A,ψc)− R̃(A)], whereA(0)=B(0). (59)

Lemma 9. For any �′,0<�′<� there exist –h� >0 and C>0, inde-
pendent of –h and τ , such that

|R(A,ψc)− R̃(A)|�Ce−�′/–heCτ , ∀τ �0, ∀–h∈ (0,–h�).

Proof. Indeed (for the sake of definiteness we consider only one
term),

rR(aR, aL,ψc)−ηr̃R(aR, aL)
= [rR(aR, aL,ψc)− rR(aR, aL,0)]+ [rR(aR, aL,0)−ηr̃R(aR, aL)]
= [rR(aR, aL,ψc)− rR(aR, aL,0)]+ Õ(e−�/–h)

since (35). Moreover,

rR(aR, aL,ψc)= ε

ω
〈ϕR,Wψ〉,

where Wψ=WI +WII and where WI does not depend on ψc. From this
fact and from Lemmas 4 and 7 it follows that

|rR(aR, aL,ψc)− rR(aR, aL,0)| = |ε|
ω

|〈ϕR,WII 〉|

� |ε|
ω

‖ϕR‖ · ‖WII‖� |ε|
ω
C–h−dσ/2‖ψc‖

� Ce−�
′/–heCτ

for any �′ ∈ (0,�) since (51).
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Now, we are ready to complete the proof of the theorem. From (59)
it follows that

A(τ)−B(τ)=
∫ τ

0
[F [A(s)]−F [B(s)]]ds+

∫ τ

0
[R(A,ψc)− R̃(A)]ds.

If we set

q(τ)=|A(τ)−B(τ)|

then from this equation and from Lemmas 8 and 9 it follows that

q(τ)�C
∫ τ

0
q(s)ds+Ce−�′/–h[eCτ −1]

for any �′ ∈ (0,�), from which and from Gronwall’s Lemma the desired
estimate (40) follows. The proof of the Theorem is so completed.

7. APPENDIX A: INEQUALITIES

Basic Inequality. Let γ >0. Then, for any y�x >0, it follows that

[yγ −xγ ]�γ (y−x)[yγ−1 +xγ−1]. (A1)

Indeed, the Taylor expansion, up to the first term, with a remainder term
gives that

yγ =xγ +γ (y−x)x̄γ−1

for some x̄ ∈ (x, y); from which the estimate (A1) immediately follows.
Gagliardo–Nirenberg inequality. The Gagliardo–Nirenberg inequality

states that

‖f ‖2σ+2
2σ+2 �Cσ,d‖∇f ‖σd2 ‖f ‖2+σ(2−d)

2 , (A2)

where

σ ∈




[0,+∞] if d=1
[0,+∞) if d=2
[0,2/(d−2)) if d >2

(A3)
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and where C is a given constant. Such an inequality (A2) can be also
rewritten as

‖f ‖p�Cp,d‖∇f ‖δ‖f ‖1−δ, δ= σd

2(σ +1)
= (p−2)d

2p
= d

2
− d

p
, (A4)

where

p∈




[2,+∞] if d=1
[2,+∞) if d=2
[2,2d/(d−2)) if d >2.
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